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Abstract
We consider the energy-driven stochastic state vector reduction equation for
the density matrix, which for pure state density matrices can be written in two
equivalent forms. We use these forms to discuss the decoupling of the noise
terms for independent subsystems, and to construct ‘environmental’ stochastic
density matrices whose time-independent expectations are the usual quantum
statistical distributions. We then consider a measurement apparatus weakly
coupled to an external environment, and show that in mean field (Hartree)
approximation the stochastic equation separates into independent equations
for the apparatus and environment, with the Hamiltonian for the apparatus
augmented by the environmental expectation of the interaction Hamiltonian.
We use the Hartree approximated equation to study a simple accretion model
for the interaction of the apparatus with its environment, as part of a more general
discussion of when the stochastic dynamics predicts state vector reduction, and
when it predicts the maintenance of coherence. We also discuss the magnitude
of decoherence effects acting during the reduction process. Our analysis
supports the suggestion that a measurement takes place when the different
outcomes are characterized by sufficiently distinct environmental interactions
for the reduction process to be rapidly driven to completion.

PACS numbers: 02.50.Ey, 03.65.Ta, 05.30.-d

1. Introduction

Understanding the measurement process has been a persistent problem since the inception of
quantum mechanics. In the orthodox Copenhagen interpretation, measurements are accounted
for by invoking a layer of classical, non-quantum mechanical reality; attempts to extend
quantum mechanics to include the measuring apparatus itself lead to quandaries, such as the
famous Schrödinger cat paradox. One approach to this problem that has been much studied
recently [1–8] postulates that the Schrödinger equation is only an approximate description
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of reality, and must be modified by small, nonlinear stochastic terms. These terms drive the
state vector reduction process, and account for the non-observation of macroscopic quantum
superpositions in measurement situations.

The proposal that a stochastic, nonlinear Schrödinger equation provides the
phenomenology of quantum measurement passes a number of consistency tests. In its
energy-driven form, it leads exactly to probabilities given by the Born rule [4, 8, 9], and
for measurements on degenerate systems leads to the Lüders projection rule [9]. There
are plausible arguments [7, 8], to be elaborated on here, that with a Planckian magnitude
of the stochastic term, coherence is maintained where observed experimentally, while state
vector reduction proceeds for measurement situations where discrete outcomes are observed.
However, the stochastic Schrödinger equation is inherently non-relativistic [10,11], involving
the same stochastic differential at all spatial locations. This raises the issue of whether it is
consistent with clustering—put simply, does the reduction of the state vector in a localized
measuring apparatus proceed independently of what goes on far away from the laboratory?
An affirmative answer to this question was given [8] under the assumption that all of the
universe is governed by the pure state stochastic reduction equation. In this paper we extend
this analysis in a number of directions, with the aim of understanding in greater detail the
stochastic evolution of a ‘measurement’ system coupled to its environment.

Our discussion is organized as follows. In section 2 we give two equivalent forms of the
Itô noise term in the stochastic evolution equation for a pure state density matrix, and use these
to discuss clustering for disjoint subsystems. In section 3 we use one of these forms to prove
the existence of pure state density matrices whose stochastic expectation gives the standard
quantum statistical distributions. We also give a mixed state generalization of these results that
is relevant when the Hamiltonian has degeneracies. In section 4 we consider a ‘measurement’
subsystem weakly coupled to an ‘environment’ subsystem, obeying overall the density matrix
stochastic evolution equation, and derive the corresponding single system Hartree or mean
field stochastic equations for the measurement and environment subsystems, working to first
order accuracy in the interaction Hamiltonian.

In section 5 we give a survey of under what circumstances the stochastic evolution equation
predicts state vector reduction, based on Planckian estimates for the magnitude of the stochastic
term. We show that when the energy spread between superimposed states is small, coherence
is maintained, in agreement with recent experiments on quantum coherence in large systems.
On the other hand, when the energy fluctuations in a measurement system are large enough,
state vector reduction proceeds rapidly to completion. We consider three types of energy
fluctuations: thermal fluctuations, shot effect fluctuations in electric currents, and surface
accretion fluctuations. For the latter, we use the mean field approximation of section 4 to
construct a simple model for accretion processes, which motivates a quantitative discussion of
their influence on the measurement process in both terrestrial and extraterrestrial environments.
In section 6 we discuss the coexistence of standard decoherence mechanisms with the stochastic
reduction process. In section 7 we state our conclusions regarding the implications of this
analysis for the measurement process in quantum mechanics. In the appendix, we discuss a
coherent state variant of the accretion model of section 5, in which reduction can proceed to
coherent states.

2. Stochastic density matrix equations and clustering

We begin by recalling some formulae from the theory of stochastic Schrödinger equations [1–8].
Letting |χ〉 be a normalized state vector, the standard stochastic evolution (‘quantum state
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diffusion’) equation for |χ〉 takes the form

d|χ〉 = [α dt + β dWt ]|χ〉 (1a)

with dWt a real Itô stochastic differential obeying

dW 2
t = dt dWt dt = 0 (1b)

and with

α = −iH − 1
8σ

2[A − 〈A〉]2

β = 1
2σ [A − 〈A〉] (1c)

where σ is a numerical parameter governing the strength of the stochastic and drift terms, and
A is a self-adjoint operator with expectation 〈A〉 in the state |χ〉:

〈A〉 = 〈χ |A|χ〉. (1d)

The energy-driven case of the stochastic evolution is obtained by takingA to be the Hamiltonian
H , which we shall assume henceforth. It is straightforward to show that the evolution of
equations (1a)–(1d) preserves the normalization of the state vector |χ〉.

Defining the pure state density matrix ρ = |χ〉〈χ |, it is easy to show that the state vector
evolution of equations (1a)–(1d) implies that the density matrix evolution is given by

dρ = −i[H, ρ] dt − 1
8σ

2[H, [H, ρ]] dt + 1
2σN(ρ,H) dWt. (2)

Direct calculation from equations (1a)–(1d) gives the coefficient N(ρ,H) of the Itô noise
term dWt in equation (2) in the form

N(ρ,H) = {ρ,H } − 2ρ Tr ρH (3a)

which by use of the pure state condition ρ2 = ρ can be written in the equivalent form

N(ρ,H) = [ρ, [ρ,H ]]. (3b)

Both of these forms have the property that if ρ2 = ρ then {ρ, dρ} + (dρ)2 = dρ, which can
be rewritten as (ρ + dρ)2 = ρ + dρ, and so they preserve the pure state condition.

Let us now consider a system for which the HamiltonianH is the sum of two Hamiltonians
H1, H2 which depend on disjoint sets of variables, and investigate the conditions under which
equations (2) and (3a), (3b) admit factorized solutions ρ = ρ1ρ2, with ρ1,2 obeying equations
of similar form driven by the respective Hamiltonians H1,2. Substituting H = H1 + H2 and
ρ = ρ1ρ2 into equations (3a), (3b), and using the facts that all variables in set 1 commute with
all variables in set 2, and that Tr = Tr1 Tr2, we find, respectively, from equations (3a) and (3b)
that

N(ρ1ρ2, H1 + H2) = ρ2[{ρ1, H1} − 2ρ1 Tr2 ρ2 Tr1 ρ1H1]

+ρ1[{ρ2, H2} − 2ρ2 Tr1 ρ1 Tr2 ρ2H2] (4a)

N(ρ1ρ2, H1 + H2) = ρ2
2 [ρ1, [ρ1, H1]] + ρ2

1 [ρ2, [ρ2, H2]]. (4b)

Clustering requires that

N(ρ1ρ2, H1 + H2) = ρ2N1(ρ1, H1) + ρ1N2(ρ2, H2) (5)

with N1,2 the restrictions of N to the 1, 2 subspaces. We see that equation (4a) obeys the
clustering property by virtue of the trace conditions Tr1 ρ1 = 1, Tr2 ρ2 = 1, while equation (4b)
satisfies the clustering property by virtue of the pure state conditions ρ2

1 = ρ1, ρ2
2 = ρ2.

Let us now examine the clustering properties of the remaining terms in equation (2). For
the left-hand side, we find by use of the Itô extension of the chain rule that

d(ρ1ρ2) = ρ2 dρ1 + ρ1 dρ2 + dρ1 dρ2. (6a)
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Thus, in order to have dρ1 and dρ2 obeying equations of the same form as dρ but restricted to
the 1, 2 subspaces, the left-hand side should take the form, using equations (1b) and (2),

d(ρ1ρ2) = ρ2 dρ1 + ρ1 dρ2 + 1
4σ

2N1(ρ1, H1)N2(ρ2, H2) dt. (6b)

For the dt terms on the right-hand side of equation (2), we have

−i[H1 + H2, ρ1ρ2] dt − 1
8σ

2[H1 + H2, [H1 + H2, ρ1ρ2]] dt

= ρ2{−i[H1, ρ1] dt − 1
8σ

2[H1, [H1, ρ1]] dt}
+ ρ1{−i[H2, ρ2] dt − 1

8σ
2[H2, [H2, ρ2]] dt} − 1

4σ
2[H1, ρ1][H2, ρ2] dt. (6c)

Assuming the conditions for the clustering property of equation (5) to hold for the Itô noise term,
comparing equations (6a)–(6c) we see that the complete density matrix evolution equation will
cluster if and only if

N1(ρ1, H1)N2(ρ2, H2) = −[H1, ρ1][H2, ρ2]. (7)

This condition does not hold as in identity for either of the two possible forms for N(ρ,H)

given in equations (3a), (3b), and so the σ 2 dt or drift term in the stochastic evolution equation
does couple disjoint systems.

However, there are two important special cases in which disjoint systems decouple
asymptotically. The first of these cases corresponds [8] to taking N(ρ,H) as in equation (3b),
so that equation (7) becomes

[ρ1, [ρ1, H1]][ρ2, [ρ2, H2]] = −[H1, ρ1][H2, ρ2]. (8a)

This equation is satisfied, by virtue of both the left- and right-hand sides vanishing, whenever
either [ρ1, H1] = 0 or [ρ2, H2] = 0, conditions that are, respectively, obeyed when system 1
or 2 is at the endpoint of the state vector reduction process. In particular, if system 1 represents
a measurement process, and system 2 represents a pure state environment at the endpoint of
its reduction process, then the stochastic dynamics of system 1 are completely independent of
the dynamics of its environment.

A more general case in which disjoint systems decouple asymptotically corresponds to
taking N(ρ,H) as in equation (3a), but not assuming the pure state condition so that this
cannot be transformed to equation (3b). Equation (7) now becomes

[{ρ1, H1} − 2ρ1 Tr1 ρ1H1][{ρ2, H2} − 2ρ2 Tr2 ρ2H2] = −[H1, ρ1][H2, ρ2]. (8b)

This equation is satisfied, again by virtue of both the left- and right-hand sides vanishing,
whenever either ρ1 is a linear combination of projectors on a degenerate submanifold of H1, or
ρ2 is a linear combination of projectors on a degenerate submanifold ofH2. For example, in the
latter case we would have ρ2H2 = H2ρ2 = E2ρ2 for some degenerate submanifold energy E2,
together with Tr2 ρ2 = 1, which imply the simultaneous vanishing of {ρ2, H2}− 2ρ2 Tr2 ρ2H2

and of [H2, ρ2]. Thus, if one were to adopt equations (2) and (3a) as a generalization of the
density matrix evolution equation to the case of non-pure state density matrices, a pure state
measurement process decouples from a mixed state environment whenever the density matrix
for this environment is a linear combination of projectors on a degenerate submanifold of its
Hamiltonian.

3. Martingale construction of the standard quantum statistical distributions

In order for the measurement system to decouple from its environment, we have seen that the
environment must be described either by a pure state density matrix that commutes with the
environment Hamiltonian, or by a mixed state density matrix that is a linear combination of
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projectors on a degenerate submanifold of the environment Hamiltonian (with the second case
equivalent to the first for a one-dimensional submanifold). This raises the question of how
such a description can be compatible with the usual description of equilibrium environments in
terms of the standard quantum statistical distributions, which are mixed state density matrices
ρ obeying the trace condition Tr ρ = 1, but which do not obey either the pure state condition
ρ2 = ρ or the more general condition that the density matrix be a linear combination of
projectors on a degenerate Hamiltonian submanifold. The answer is that in the theory of
stochastic state vector reduction, the role of the usual mixed state density matrix is played [7]
by the stochastic expectation E[ρ] and not by ρ itself. Thus an equilibrium environment
can be described by a stochastic density matrix that is a linear combination of projectors
on a degenerate Hamiltonian submanifold, the stochastic expectation of which has the form
E[ρ] = f (H), with f one of the standard quantum statistical distribution functions of the
Hamiltonian. Since equation (2) implies that E[ρ] obeys the time evolution equation

dE[ρ] = −i[H,E[ρ]] dt − 1
8σ

2[H, [H,E[ρ]]] dt (9)

any E[ρ] of the form f (H) is time independent, as expected of the quantum statistical
distributions.

To show that there are pure state density matrices with the required expectation, we proceed
constructively by use of the density matrix evolution equation in the form

dρ = −i[H, ρ] dt − 1
8σ

2[H, [H, ρ]] dt + 1
2σ [{ρ,H } − 2ρ Tr ρH ] dWt. (10)

Although we derived this equation in section 2 for pure state density matrices, we shall now
use it, as suggested in the discussion associated with equation (8b), as a stochastic evolution
equation for density matrices ρ that do not obey the pure state condition. Taking the initial ρ at
time t = 0 as ρ0 = f (H), we see from equation (9), which follows by taking the expectation
of equation (10), that E[ρ] = f (H) for all times. Also, since equation (10) only involves the
Hamiltonian H , the stochastically evolved ρ is still a function of H , and so commutes with H

at all times. Thus, for the choice of initial condition ρ0 = f (H), equation (10) simplifies to

dρ = 1
2σ [{ρ,H } − 2ρ Tr ρH ] dWt. (11)

Equation (11) defines ρ to be a martingale, for which the expectation Es conditional on
information available up to time s obeys Es[ρt ] = ρs, s � t , which reduces to E[ρ] ≡
E0[ρt ] = ρ0 = f (H) when s = 0. (Note that if instead of equation (10) we had used the
stochastic equation obtained from equations (2) and (3b), the initial ρ0 = f (H) would not
evolve in time at all, since equation (3b) vanishes identically when ρ commutes with H . This
underscores again the fact that equations (3a) and (3b) are equivalent only for pure state density
matrices, but define different stochastic evolutions for density matrices not obeying the pure
state condition ρ2 = ρ.)

Let us now show that at late times ρ evolves by equation (11) into a pure state projector
when the Hamiltonian H is non-degenerate, or into a linear combination of projectors on a
degenerate submanifold of H when H is degenerate. The proof of this parallels the proof [8,9]
that equations (1a)–(1d) lead to state vector reduction. We consider the variance V of the
Hamiltonian, defined by

V = Tr ρH 2 − (Tr ρH)2 (12a)

which by the Itô extension of the chain rule evolves in time as

dV = Tr dρH 2 − 2 Tr ρH Tr dρH − (Tr dρH)2. (12b)

Using equation (11) for dρ to evaluate Tr dρHn, we find

Tr dρHn = σ [Tr ρHn+1 − Tr ρHn Tr ρH ] dWt. (12c)
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Thus, substituting equation (12c) for n = 1, 2 into equation (12b) and taking the expectation,
we get

dE[V ] = −σ 2E[V 2] dt. (13)

From here on the argument is identical to that of [8, 9], and leads to the conclusion that as
t → ∞ the variance V approaches 0 almost certainly. When the energy spectrum is non-
degenerate, this implies that at late times only one density matrix element ρE is non-zero, and
so the initial density matrix ρ0 = f (H) has evolved to a pure state density matrix obeying
ρ2 = ρ. More generally, when the energy spectrum is degenerate, the vanishing of the variance
implies that the density matrix has evolved to a linear combination of projectors on a degenerate
submanifold of the Hamiltonian. Thus, evolution of the initial density matrix ρ0 = f (H) by
equation (10) leads to a late time density matrix that obeys E[ρ] = f (H), and which is a
pure state density matrix in the non-degenerate case, or a linear combination of projectors on
a degenerate submanifold of H in the degenerate case. We take such density matrices as our
model for the environment and, by the arguments of section 2, are assured that the evolution
of measurement systems uncoupled by Hamiltonian interaction terms to this environment are
independent of the environmental dynamics, when the total system evolves under the density
matrix dynamics of equations (2) and (3a).

4. Mean field approximation for a system weakly coupled to its environment

Let us now consider two subsystems with disjoint variables that are weakly coupled through
an interaction term �H in the Hamiltonian, so that the total Hamiltonian appearing in
equation (10) is H = H1 + H2 + �H . We shall take subsystem 1 to be a measuring apparatus
(including the microscopic system being measured), whose reduction dynamics we wish to
follow, while we take subsystem 2 to be the external environment with which this measuring
apparatus interacts. We shall derive a mean field approximation to the dynamics, in which
each subsystem obeys an independent system stochastic equation with a modified Hamiltonian,
that reflects the mean interaction with the other subsystem. To this end, we substitute the
independent subsystem Ansatz ρ = ρ1ρ2 into equation (10), and take the partial trace Tr2

to average over the subsystem 2 dynamics, giving an effective equation for subsystem 1, and
similarly, with the roles of 1 and 2 interchanged, to get an effective equation for subsystem 2.
We shall assume that in the limit of vanishing coupling �H , the environment subsystem 2 is
in one of the ensembles constructed in section 3 that is a function solely of H2, so that in the
presence of �H we have [ρ2, H2] = O(�H). We do not make a corresponding assumption
for subsystem 1, since we will be interested in the case in which this is initially in a generic
pure state.

We proceed with this calculation term by term. From the left-hand side of equation (10),
substituting equation (6a) we get

Tr2 dρ = dρ1 Tr2 ρ2 + (ρ1 + dρ1)Tr2 dρ2 = dρ1 (14)

where we have used the condition Tr2 ρ2 = 1 which implies that Tr2 dρ2 = 0. From the first
term on the right-hand side of equation (10) we get

Tr2(−i)[H, ρ] dt = −i[H1, ρ1] Tr2 ρ2 − i Tr2[�H, ρ1ρ2] − iρ1 Tr2[H2, ρ2]. (15a)

The first term on the right of equation (15a) simply gives

−i[H1, ρ1] dt. (15b)

Since Tr2 �Hρ2 = Tr2 ρ2�H , the second term on the right of equation (15a) becomes

−i[Tr2 ρ2�H, ρ1] dt (15c)
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and the third term on the right of equation (15a) vanishes. So in sum, the first term on the
right-hand side of equation (10) gives

−i[H1 + (Tr2 ρ2�H), ρ1] dt. (16)

We turn next to the second term on the right-hand side of equation (10), which gives
− 1

8σ
2 dt times the partial trace of the double commutator,

Tr2[H, [H, ρ]] = Tr2[H1 + H2 + �H, [H1 + H2 + �H, ρ1ρ2]]

= Tr2[H1 + �H, [H1 + H2 + �H, ρ1ρ2]]
= Tr2{[H1 + �H, [H1, ρ1]ρ2] + [H1, [H2, ρ2]ρ1] + [H1, [�H, ρ1ρ2]]

+ [�H, [H2, ρ2]ρ1] + [�H, [�H, ρ1ρ2]]}
= [H1 + Tr2 ρ2�H, [H1 + Tr2 ρ2�H, ρ1]] + O((�H)2) (17)

where we have used the facts that (i) Tr2[H2, g1,2] = 0 for any operator g1,2 acting on both
subsystems 1 and 2, and that (ii) by our equilibrium assumption for the environment, [H2, ρ2]
is of order �H . (Step (ii) is the only one which does not go through in the corresponding
effective equation calculation for the environment subsystem 2, leading to an additional term
in its effective equation of motion given in equation (20a).)

Finally, we turn to the third term on the right-hand side of equation (10), which gives
1
2σ dWt times

Tr2[{ρ,H } − 2ρ Tr ρH ] = Tr2[{ρ1ρ2, H1 + H2 + �H } − 2ρ1ρ2 Tr1 Tr2 ρ1ρ2(H1 + H2 + �H)]

= Tr2[{ρ1ρ2, H1 + �H } + ρ1{ρ2, H2} − 2ρ1ρ2 Tr1 ρ1(H1 + Tr2 ρ2�H)

−2ρ1ρ2 Tr2 ρ2H2] = {ρ1, H1 + Tr2 ρ2�H } − 2ρ1 Tr1 ρ1(H1 + Tr2 ρ2�H) (18)

where no approximations have been made.
Putting everything together, we see that the mean field approximation for the

‘measurement’ subsystem 1 is

dρ1 = −i[H ′
1, ρ1] dt − 1

8σ
2[H ′

1, [H ′
1, ρ1]] dt

+ 1
2σ [{ρ1, H

′
1} − 2ρ1 Tr1 ρ1H

′
1] dWt + O(σ 2(�H)2 dt) (19a)

with the effective Hamiltonian:

H ′
1 = H1 + Tr2 ρ2�H. (19b)

The corresponding equation for the ‘environment’ subsystem 2 is obtained by interchanging
the labels 1 and 2, and restoring the term dropped in step (ii) leading to equation (17), giving

dρ2 = −i[H ′
2, ρ2] dt − 1

8σ
2[H ′

2, [H ′
2, ρ2]] dt + 1

2σ [{ρ2, H
′
2} − 2ρ2 Tr2 ρ2H

′
2] dWt

− 1
8σ

2[Tr1(�H [H ′
1, ρ1]), ρ2] dt + O(σ 2(�H)2 dt) (20a)

with the effective Hamiltonian

H ′
2 = H2 + Tr1 ρ1�H. (20b)

The added term on the second line of equation (20a) vanishes through order (�H)2 when the
reduction process for subsystem 1 has concluded, since then the density matrix for subsystem 1
obeys [H ′

1, ρ1] = 0 up to error terms of order (�H)2. As a consistency check on the calculation,
we see that the mean field evolution equations obey Tr1 dρ1 = Tr2 dρ2 = 0, and so preserve
the trace conditions Tr1 ρ1 = Tr2 ρ2 = 1.
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5. Dynamics of the measurement process: when is coherence maintained, when does the
state vector reduce?

Let us now examine the implications of equations (1)–(3) for measurements. We first have
to specify the value of the parameter σ governing the magnitude of the stochastic process. If
quantum mechanics is modified at all, it seems likely that such modifications come from new

physics at the Planck scale, and so we adopt for this discussion the estimate [7,12] σ ∼ M
− 1

2
Planck,

with MPlanck the Planck mass (in units with h̄ = c = 1). With this estimate, the reduction time
tR in seconds for a state with initial energy variance �E is given [7–9] by

tR ∼
(

2.8 MeV

�E

)2

. (21)

Thus, for�E equal to a proton mass, tR ∼ 10−5 s, while for�E equal to the mass of a nitrogen
molecule, one has tR ∼ 10−8 s.

5.1. Maintenance of coherence

In order for stochastic energy-driven state vector reduction to give a viable phenomenology,
it must satisfy the twin constraints of predicting the maintenance of coherence when this is
observed, while predicting a rapid enough state vector reduction when a probabilistic choice
between alternative outcomes is observed. We first discuss the constraints imposed by the
maintenance of coherence. We begin by noting that according to equation (21), the sole
criterion governing how rapidly the state vector reduces is the energy variance; whether the
system is microscopic or macroscopic plays no role. Coherent superpositions of macroscopic
states, involving large numbers of particles, will persist in time if the energy spread between the
superimposed states is small enough. As a first example, consider the recent superconducting
quantum interference device (SQUID) experiments [13,14] observing the existence of coherent
superpositions of macroscopic states consisting of oppositely circulating supercurrents. Taking
for discussion the experiment [13] (which of the two has the larger energy variance between
the superimposed states), the energy spread �E is roughly 8.6 × 10−6 eV, and the circulating
currents each correspond to the collective motion of ∼109 Cooper pairs. According to
equation (21), despite the macroscopic structure of the state vector, the state vector reduction
time tR for this experiment should be about 1023 s ∼ 3 × 1015 years, and so maintenance of
coherence is expected.

As our next example of the maintenance of coherence in macroscopic systems, we consider
a recent experiment [15] demonstrating diffraction of the fullerenes C60 and C70. We begin
by noting that a diffraction pattern can be observed in a monoenergetic beam (in fact, this is
the ideal condition for the experiment), so this class of experiments provides no evidence for
coherent superpositions of states of differing energies. However, in a realistic experiment there
will be an energy spread in the wavepacket for each particle constituting the beam. To see a
diffraction pattern, the spread in de Broglie wavelengths �λ should be considerably smaller
than λ; adopting the very weak bound �λ � λ, we get the requirement that the spread in beam
momenta �p in each wavepacket should obey �p � p. This implies that each wavepacket
must have an energy spread �E obeying �E � 2Ekinetic. In the experiments of [15] the beam
was obtained from an oven at approximately 900 K, and so the the bound on the energy spread
becomes �E � 2× (3/2)×900 K ∼ 0.23 eV. The corresponding state vector reduction time
predicted by equation (21) is of order 1.5 × 1014 s ∼ 5 × 106 years, and so energy-driven state
vector reduction plays no role in this experiment. Similar estimates, and the same conclusion,
would hold if larger objects, such as viruses, were diffracted.
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These estimates suggest that in order to try to see the breakdown of coherence predicted
by equation (21), one should consider experiments with systems having long-lived metastable
states separated by a large energy gap from the ground state. In atomic systems, the
requirements on stability of the metastable state are very severe, since for a typical atomic
energy splitting of a few eV, equation (21) predicts a state vector reduction time of order
1012 s ∼ 3 × 104 years. For example, in the quantum intermittency experiments discussed
in [16,17], the metastable state lifetime is of order 1 s, and so stochastic state vector reduction
effects are negligible. A potentially more promising case is provided by certain long-lived
nuclear isomers [18], which are rendered metastable by their high spins, and which have
large energy gaps from their ground states. For example, 178Hf has an isomer with a half-
life of 31 years suspended 2.4 MeV above its ground state. Quantum mechanics predicts
that a coherent superposition of the isomeric state and the ground state should be stable for
time intervals that are short relative to 31 years, whereas equation (21) predicts a spontaneous
reduction of such a superposition to either the isomeric state or the ground state, with a reduction
time of order 1 s. The only nuclear isomer to exist naturally on Earth is the metastable isomer
of 180Ta, which has a half-life of more than 1015 years, an energy gap of 75 keV from the
ground state, and which accounts for roughly 1 part in 104 of naturally occurring tantalum.
According to equation (21), a coherent superposition of the ground state and metastable isomer
of 180Ta should spontaneously reduce to either the isomeric state or the ground state, with a
reduction time of order 23 min. Maintenance of coherence of such a superposition for times
significantly longer than this would decisively rule out equations (1)–(3) as a phenomenology
for state vector reduction. For example, if a laser using isomeric 180Ta could be constructed,
and if the characteristic relaxation times for conventional sources of dissipation could be made
much longer than 23 min, then the effects of equation (21) might appear as an additional,
unconventional source of stochastic fluctuations or of dissipation. It would clearly be of
interest to work out the detailed implications of equations (1)–(3) for laser action in such a
system.

5.2. Reduction in measurement situations

We turn now to the second requirement that must be satisfied by a phenomenology of state
vector reduction, which is that it should lead to rapid reduction in experimental situations where
a probabilistic outcome is observed. According to the von Neumann model for measurement
[19], a measurement sets up a correlation between states |f 〉 of a quantum system being
measured, and macroscopically distinguishable states |M 〉 of the measuring apparatus M, in
such a way that an initial state

|f 〉|Minitial〉 =
∑
 

c |f 〉|Minitial〉 (22a)

evolves unitarily to∑
 

c |f 〉|M 〉. (22b)

An objective state vector reduction model must then account for the selection of one of the
alternatives |f 〉|M 〉 from this superposition, with a probability given by |c |2. If the energy
spread among the states |f 〉 is a typical atomic magnitude of a few eV, then as we have seen
earlier using equation (21), the energy-driven model of equations (1)–(3) cannot quantitatively
account for state vector reduction, unless the energy spreads among the alternative apparatus
states in the superposition are much larger. Since in the ideal measurement model there is no
energy transfer from the microscopic system to the apparatus, such an energy spread in the
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measurement apparatus states can only be present if induced by environmental interactions,
which are ignored in the von Neumann analysis. If these environmentally induced energy
fluctuations are large enough for the state vector to reduce in a time much smaller than the
measurement time, then the observed results will agree with the Copenhagen interpretation
of the measurement process. If the reduction time were of the order of or larger than
the measurement time, then equations (1)–(3) would predict stochastic fluctuations among
alternative measurement outcomes, lasting until one is finally selected in a time roughly equal
to tR . However, as long as the apparatus states |M 〉 are orthogonal for different  , no quantum
interferences between different outcomes are possible.

To reiterate, for environmental interactions to be effective in producing state vector
reduction, they must lead to energy fluctuations �E of the apparatus in the course of a
measurement, that are large enough for equation (21) to predict a reduction time tR that is
less than the time it takes to make the measurement. Although different measuring devices
have different response times, we shall assume for purposes of our discussion that relevant
measurement times range down to 10−8 s, which requires for reduction a �E ranging up to
∼30 GeV. We shall consider three possible sources of energy fluctuations: thermal energy
fluctuations, fluctuations in apparatus mass from particle accretion processes, and fluctuations
in apparatus mass from amplified fluctuations in the currents that actuate the indicator devices.

Thermal energy and temperature fluctuations in a canonical ensemble, that is, with fixed
particle number, are governed by the equations

〈(�E)2〉AV = kBT
2CV 〈(�T )2〉AV = kBT

2/CV (23)

with kB Boltzmann’s constant and with CV the heat capacity. From these formulae, and the
values of the heat capacity and thermal conductivity for various substances, together with
the formulae governing the surface radiation rate, one can estimate that when a body is large
enough for the energy fluctuations at room temperature to be of order 1–30 GeV, the thermal
relaxation time over which such energy fluctuations occur is much larger than measurement
times of interest. (For example, for 1 g of water at room temperature, the root mean square
energy fluctuation is ∼14 GeV, and the thermal conduction relaxation time is >200 s.) The
reason for this is that the rate for heat transfer processes is proportional to the temperature
difference �T , and equation (23) shows that when a body is large, the temperature fluctuation
�T is small. Thus we find that thermal energy fluctuations do not in general obey the criterion
stated above for relevance to state vector reduction, that the energy fluctuation should occur
within the measurement time.

A more significant source of energy fluctuations comes [7] from particle accretion
processes, for which we formulate a simple model within the mean field framework of section 4.
Consider a measuring apparatus which has N surface accretion sites for molecules of mass m.
In Fock space representation, its Hamiltonian can be written as

H1 = H0 +
N∑

j=1

ma
†
j aj (24a)

with H0 the bulk Hamiltonian for the apparatus, and with a
†
j and aj , respectively, the creation

and annihilation operators for the accreted molecules. We assume the environment to contain
a large number M of molecules that can be accreted onto the surface, with creation and
annihilation operators b

†
k, bk, k = 1, . . . ,M , and with a coupling to the accretion sites given

by

�H =
N∑

j=1

M∑
k=1

[Ajka
†
j bk + adjoint]. (24b)
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This interaction Hamiltonian conserves the total number operator

N =
N∑

j=1

a
†
j aj +

M∑
k=1

b
†
kbk (25)

in other words, the total number of molecules accreted onto the surface or remaining in the
environment is constant.

In typical measurement situations, the environment density matrix will be diagonal in the
number operator

∑M
k=1 b

†
kbk of the molecules being accreted. In this case, which we term

‘incoherent’, the environmental expectation of �H vanishes

Tr2 ρ2�H = 0 (26)

and the reduction process is governed, according to equations (19a) and (19b), by the
measurement system Hamiltonian H1 alone. (For a discussion of the coherent case, in which
the environmental expectation of �H is non-zero, see the appendix.) The Hamiltonian �H

still plays a role, since in order�H in probability amplitudes (corresponding to order (�H)2 in
probabilities or transition rates) it leads to a sticking probability and an evaporation probability
per unit time, respectively, for a molecule in the environment to accrete to the surface of
the apparatus, and for a molecule already accreted to evaporate. As a result of these non-
vanishing transition probabilities, the number of molecules accreted to the surface is constantly
fluctuating. Assuming a simple colloid statistics model [20] in which each accretion site can
hold only one molecule, the number of accreted molecules n obeys a Poisson distribution
σ(n,X) = e−XXn/n! with the mean X proportional to the sticking probability and inversely
proportional to the evaporation rate, and with the the root mean square fluctuation in the number
of accreted molecules equal to the square root of the mean number X of accreted molecules.

Since distinguishable measurement outcomes must involve different configurations of the
apparatus with respect to its environment, they will have different values of the accretion
numbers a

†
j aj associated with the N accretion sites. Thus, the energy eigenvalue H1 of the

measurement apparatus will differ for each distinguishable measurement outcome, with the
spread of eigenvalues between any two outcomes being typically the mass of the accreted
molecules m times the root mean square fluctuation in the number of accreted molecules. This
statement assumes that the flux of accreting molecules in the environment is high enough for
such a fluctuation to actually occur during the state vector reduction time. In estimating when
this condition holds, we will follow the review of Redhead [21] in assuming that the sticking
probability is of order unity, in which case the minimum time for one molecule to be accreted
onto an area of 1 cm2 can be read off from the molecular flux versus pressure tabulated in table 2
of [21]. At room temperature and atmospheric pressure (760 Torr) the time for one molecule
to be accreted onto an area of 1 cm2 is 3 × 10−24 s, while at an ultrahigh vacuum of 10−13 Torr
it is 3×10−8 s. Thus, for an apparatus in the atmosphere at standard temperature and pressure,
where the bulk of the accreting atoms are nitrogen molecules, the minimum apparatus area
required for one molecule to accrete in a reduction time of 10−8 s (corresponding to a �E

equal to the mass of a nitrogen molecule) is 3 × 10−16 cm2, with the corresponding minimum
area needed at a pressure of 10−13 Torr equal to 3 cm2.

According to [21], the nighttime pressure at the surface of the Moon is about 10−13 Torr,
while the pressure in interstellar space (within the galaxy) has been estimated as 10−18 Torr.
Under the assumption of a sticking probability of order unity, the mass accretion rate scales as
the pressure divided by the mean molecular velocity. While molecular velocities away from
the vicinity of the Earth vary over a wide range, with effective temperatures in interstellar
space ranging [22] from typically 50–100 to 106 K, we can get an estimate that is high by at
most a factor of 2 or 3 by neglecting the velocity factor, and simply assuming that the mass
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accretion rate scales with the pressure from the values given in the table of [21]. With this
assumption, the minimum apparatus area needed for a reduction time of 10−8 s is 3 cm2 at the
surface of the Moon, and is 3 × 105 cm2 = 30 m2 in interstellar space. In intergalactic space,
the predominant matter [22] is highly ionized hydrogen, with an effective temperature of order
104 K and a density of ∼0.23 proton m−3. In this environment, the minimum apparatus area
needed for a reduction time of 10−8 s is around 8 × 105 m2 (corresponding to the accretion of
28 protons). If we were only to demand reduction in 3 × 10−4 s, then the needed apparatus
area in interstellar space would decrease to less than 10 cm2, while that in intergalactic space
would decrease to ∼1 m2. Thus, a capsule large enough to sustain Schrödinger’s cat, situated
in intergalactic space, would have a reduction time stimulated by collisions with molecules
in the intergalactic medium much smaller than the length of time needed to ascertain whether
the cat were dead or alive! Perhaps more to the point, in a typical high precision molecular
beam experiment [23], the beam velocity is of order 105 cm s−1, and the beam length is of
order 2.7 m. Hence the time for the beam to traverse the apparatus is 2.7 × 10−3 s, and so the
reduction time in intergalactic space for a capsule large enough to enclose the apparatus would
be smaller, by at least an order of magnitude, than the measurement time. Clearly, in this
situation the limits predicted by equation (21) are being pushed, and there could be realizable
experiments which, in intergalactic space, would be predicted to start to show evidence of the
stochastic fluctuation between outcomes characteristic of the time evolution of the state vector
in stochastic reduction models. But it seems unlikely that such an experiment could be devised
within the confines of the solar system—the ambient matter fluxes are too high.

In making some of the above estimates, it is convenient to have an alternative form of
equation (21) that takes into account the accretion rate limit on �E, and which is derived as
follows. Let M be the mass accretion rate per unit area of the apparatus in units s−1, so that
the mass accretion on area A in time tR s is �E = AMtR . Substituting this into equation (21)
and solving for tR gives

tR =
(

2.8 MeV

AM

) 2
3

. (27)

This formula can be used whenever at least one molecule is accreted in the time tR . Given
M, we can calculate the area A corresponding to a given reduction time, and vice versa. For
example, from equation (27) we find that for an apparatus of area 1 cm2 in the atmosphere at
standard temperature and pressure, the reduction time is tR = 5 × 10−19 s, corresponding to
the accretion of ∼1.5 × 105 molecules in the time tR .

Throughout this analysis, we have assumed that the Hamiltonian that is relevant for the
stochastic Schrödinger equation is the total Hamiltonian

H =
∫

d3xT00(x) (28)

defined by gravitational couplings to the stress-energy tensor Tµν(x), which includes rest mass
terms. Although in non-relativistic quantum mechanics one often drops rest mass terms when
they lead to irrelevant constant energy shifts, there is no reason in principle to do so. In fact,
in the standard model of elementary particles, all fermion rest masses arise from the Yukawa
couplings of the fermions to the Higgs particle, so that from this point of view rest masses are
not an additive constant term in the Hamiltonian, but are a dynamical product of interactions.
We have also assumed that the relevant surface area is that of the whole apparatus, rather than
just that of components of potentially small area such as solid state detectors, emulsions, or
particle collector cups. This assumption is motivated by our decoupling analysis of section 2,
where we saw that only non-interacting systems can be assumed (under certain equilibrium
conditions) to decouple. The components of an apparatus (power supplies, magnets, vacuum
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pumps, detectors, indicator pointers, magnetic recording domains) are not in equilibrium and
are in interaction with one another, and so using the area of the whole apparatus, rather than
of just the smallest components, seems justified.

We turn finally to a third potential source of energy fluctuations, arising from the amplified
fluctuations in the currents which actuate experimental indicating or recording devices. Of
course, if power sources are included, there are no overall current fluctuations, but power
supplies are typically large in area and so when included in the system the accretion analysis
just given indicates rapid reduction times. In a typical electrically amplified measurement,
a final total charge transfer Ne (with e the charge of an electron) actuates an indicator or
recording device. Assuming that the fluctuation in the current is the amplified fluctuation in
the initially detected signal, for amplification gain G we have �N ∼ G× (N/G)

1
2 = (NG)

1
2 ,

an estimate which agrees within factors of order unity with the standard noise estimate for
photomultipliers [24]. Let us take N to correspond to a charge transfer of 1 mA (a voltage
change of 10 V at 10 k- impedance) over a 10−8 s pulse, so that N ∼ 6 × 107, and assume a
gain G ∼ 104, giving �N ∼ 8 × 105. Multiplying by the electron mass of 0.5 × 10−3 GeV,
we find that the corresponding energy fluctuation is �E ∼ 4 × 102 GeV, which leads to state
vector reduction in 5 × 10−11 s. Thus, electric current fluctuations play a significant role in
state vector reduction when the ‘apparatus’ is defined to exclude power sources.

Our overall conclusion is that conditions under which laboratory experiments are
performed, as well as conditions under which space capsule experiments might be performed
in the foreseeable future, are consistent with state vector reduction times as estimated by
equation (21) that are well within experimental measurement times.

5.3. Experiments with semi-silvered mirrors

In the preceding two subsections we have considered the case in which the energy variance
is so small that coherence is maintained, and the case in which the energy variance is large
enough that reduction proceeds rapidly to completion. Let us now briefly consider a case that
contains elements of both, in which an apparatus is constructed using semi-silvered mirrors
(for photons) or thin detectors (for particles), so that there is a probability amplitude α for no
interaction with the apparatus and the maintenance of coherence, and a probability amplitude
β for a measurement to take place. The state vector then has the form, after the measurement
interaction,

α|f 〉|Minitial〉 + β
∑
 

c |f 〉|M 〉. (29)

Assuming that |Minitial〉 and |M 〉 differ sufficiently in energy for reduction to take place,
there are now two possible classes of outcomes. With probability |βc |2 the  th measurement
outcome is observed, while with probability |α|2 the initial state is unchanged, corresponding
to transmission through the semi-silvered mirror or thin detector. In making the latter assertion,
we are using the fact that, as shown in [9], the model of equations (1)–(3) obeys the Lüders
projection postulate. That is, a component of the wavefunction lying within a submanifold
of Hilbert space that is energy degenerate (or nearly degenerate, in the sense of section 5.1)
survives unchanged in form, with the appropriate probability, as an outcome of the reduction
process. This corresponds exactly to what happens when a beam is transmitted through a
partially silvered mirror or a thin detector. This discussion generalizes immediately to the case
in which the transmitted beam has different phase shifts in the various terms in the superposition
over wavefunction components |f 〉.
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6. Coexistence of reduction and decoherence

In the previous section, we considered the effects on an apparatus of inelastic collisions,
in which the mass of the apparatus fluctuates. However, an apparatus considerably more
frequently suffers elastic collisions with atoms and photons in its environment, which are
responsible for the decoherence effects [25–27] that have been much discussed in the literature.
We shall argue in this section that decoherence effects do not substantially modify the results
of the preceding section.

We begin with a general argument that is independent of the details of modeling
decoherence. When elastic interactions with the environment are taken into account, the
effective apparatus wavefunction has to be extended to include the wavefunctions of all particles
with which it interacts during the reduction time tR . Since this extension of the apparatus
definition increases its area, the rate of mass fluctuations is increased, and the effective reduction
time estimated in the preceding section is, if anything, decreased. (Because tR is in general
shorter than the time for molecules or photons in the environment to collide with one another,
we do not have to continue this enlargement of the apparatus another step to include the
particles with which the decohering particles interact—they can be regarded as effectively
non-interacting. For example, we estimated earlier that in air at standard temperature and
pressure, the reduction time tR for an apparatus of area 1 cm2 is ∼5 × 10−19 s (during which
time it accretes ∼1.5 × 105 air molecules), whereas the mean time between collisions of air
molecules with each other is ∼10−10 s. Since the reduction time through accretion scales
as the inverse 2

3 power of the density of the environmental medium, while the time between
collisions of a molecule scales inversely as the density, in more dilute environments this
inequality gets stronger.) With the definition of the apparatus wavefunction extended in this
way, equation (22b) is modified to read∑

 

c |f 〉|M 〉|.e 〉 (30)

with |.e 〉 the environmental wavefunction associated with the  th apparatus state. We can now
apply the analysis developed earlier, using equations (1)–(3) to describe the stochastic reduction
of the wavefunction of equation (30), with the conclusions reached previously unaltered. The
wavefunction of the extended apparatus remains unit normalized, and its density matrix remains
a pure state density matrix, which stochastically evolves to an energy eigenstate with the rate
given by equation (21).

Decoherence effects manifest themselves by the exponential decay with time of the inner
product 〈.e |.e ′ 〉, for  �=  ′, so that the environmental states associated with different
measurement outcomes become rapidly orthogonal. Correspondingly, in the reduced density
matrix for the original unextended apparatus, obtained by tracing out the environmental degrees
of freedom, there is an exponential decay of the off-diagonal matrix elements. For the
superposition of energy eigenstates that is relevant for our discussion, the relevant decay or
decoherence rate of the off-diagonal reduced matrix element is given by [25, 26]

D = NscattRe [1 − 〈S†
 S ′ 〉]. (31a)

Here Nscatt is the number of scatterings by environmental particles in unit time, 〈· · ·〉 is an
expectation in the state of the scattering particle, andS andS ′ are the scattering matrices acting
on this particle when it scatters on the respective components of the apparatus wavefunction
with state labels  and  ′. In our context, these apparatus states differ only by the addition of
some number of accreted molecules, and so in a weak scattering approximation the product
S

†
 S ′ can be approximated as SM , with SM the scattering matrix for an environmental particle
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to scatter from the accreted molecules. In this approximation, equation (31) simplifies to

D = Nscatt Re [1 − 〈SM〉]. (31b)

Expressing the scattering matrix SM in terms of the corresponding scattering amplitude, and
using the optical theorem, equation (31b) reduces [25] to

D = 1
2 × scattering rate. (32)

Combining equation (32) with our estimates earlier for an area 1 cm2 apparatus in air, the
decoherence rate arising from molecules of the environment scattering on the molecules
accreted during the reduction time is 1

2 × 1010 s−1 × 1.5 × 105 ∼ 0.7 × 1015 s−1, several
orders of magnitude smaller than the reduction rate t−1

R ∼ 2 × 1018 s−1, and so decoherence
effects are in fact unimportant over the duration of the reduction process. Since the ratio of
the reduction rate to the decoherence rate (calculated for the number of molecules accreted
over the reduction time) scales with area as A 1

3 , this conclusion remains true down to an
apparatus area of ∼4 × 10−11 cm2, where the two rates become approximately equal. Thus,
even for a very small apparatus the environmental states |.e 〉 are nearly identical to the initial
environmental state |.e〉, and so the wavefunction of equation (30) is negligibly entangled with
the environment. Therefore instead of using the extended apparatus to discuss the reduction
process, one is justified in ignoring decoherence and using the original unextended apparatus as
in equation (22b). Our conclusion here for energy-driven reduction models differs significantly
from that reached [28,29] for spontaneous localization models, where decoherence effects over
the reduction time are substantial; however, in these models the various apparatus states in the
superposition of equation (22b) differ by a displacement of the center of mass of some part of
the apparatus, which gives a decoherence effect proportional to the (macroscopic) scattering
cross section of that part of the apparatus which is displaced.

7. Discussion and conclusions

The analysis we have given of a number of aspects of the effect of the environment on
the measurement process, including the decoupling of isolated systems from environments
in equilibrium, the effect of energy fluctuations induced by mass accretion, and the effect
of decoherence processes, supports the view that the energy-driven stochastic Schrödinger
equation gives a viable phenomenology of state vector reduction. According to this picture, a
measurement takes place when the different outcomes are characterized by sufficiently large
environmentally induced energy fluctuations in the apparatus for the state vector reduction
process, which is driven by the energy variance, to proceed rapidly to completion. The infinite
Von Neumann regression (of an apparatus measuring an apparatus measuring an apparatus . . . ,
ad infinitum) terminates when the apparatus size is large enough for its energy fluctuations
to lead to state vector reduction within the specified observation time. This requirement on
apparatus size meshes in a natural way with the intuitively obvious requirement that, in a
measurement, different experimental outcomes must be macroscopically distinguishable.
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Appendix. Coherent case of the accretion model

Anandan [30] has raised the interesting question of whether state vector reduction can proceed
to a coherent state endpoint. One way in which this can happen is when the signal amplification
process involves coherent states, as discussed in [27]. Another way, which we shall discuss
here, corresponds to the ‘coherent’ case of the accretion model formulated in section 5.2, in
which the environment is in a coherent state, so that the environmental expectation of �H is
non-zero. Assuming for simplicity that there is only one accretion site, which can be multiply
occupied, we have then

H1 + Tr2 ρ2�H = H0 + ma
†
1a1 + λa

†
1 + λ∗a1 (A.1a)

with λ given by

λ =
M∑
k=1

A1k Tr2 ρ2bk. (A.1b)

Assuming H0 to commute with a1, equations (A.1a) and (A.1b) describe the zero forcing
frequency limit of the forced harmonic oscillator, which has been extensively studied [31,33],
and can be succinctly solved by coherent state methods [32, 33]. Defining z and c1 by

z ≡ −λ/m c1 ≡ a1 − z = a1 + λ/m (A.2a)

we have

H1 = H0 + mc
†
1c1 + constant (A.2b)

which in its c1 dependence is a standard harmonic oscillator. The c1 oscillator ground state |0〉
obeys

c1|0〉 = 0 ⇒ a1|0〉 = z|0〉 (A.2c)

in other words, |0〉 is a coherent state in terms of the original operators a1.
Ignoring an overall constant arising from terms in equation (A.2b) that commute with

a1, the general eigenstate of equation (A.2b) is |n〉, with n the number of c1 quanta, and has
energy eigenvalue mn. This state is a coherent superposition of states with different numbers
of molecules on the accretion site. For energy eigenvalue n, the probability P(n|k) of finding
n − k molecules on the site can be exactly expressed [31, 33] as a Laguerre polynomial, and
for |z| � 1 and n large can be approximated [34] as

P(n|k) � [J|k|(2n
1
2 |z|)]2 (A.3a)

with Jk the order k Bessel function; the Bessel function addition formula [35]

1 = J0(w)2 + 2
∞∑
n=1

Jn(w)2 (A.3b)

implies that the probabilities of equation (A.3a) sum to unity:
∞∑

k=−∞
P(n|k) = 1. (A.3c)

Equation (A.3a) is rapidly oscillating as a function of k, but using the asymptotic estimate [36]

Jν(ν secβ) �
(

2

πν tan β

) 1
2

cos

(
ν tan β − νβ − 1

4
π

)
(A.4a)

it is easily seen that the averaged envelope of P(n|k) is given by

P(n|k) � 1

π

1

(4n|z|2 − k2)
1
2

(A.4b)

showing that the values of k are mainly distributed (apart from an exponentially decaying tail)
between −2n

1
2 |z| and 2n

1
2 |z|.
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